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Particles interacting as square wells or square barriers of finite range r are modeled as a two-
dimensional lattice gas, in the spirit of the liquid-gas model of Appert and Zalesky [Phys. Rev. Lett. 64,
1 (1990)]. If ris sufficiently large, the system exhibits phase separation. We derive the equation of state,
which is of the van der Waals type. If it has an unstable branch, the Maxwell construction is used.
Analytical expressions for the transport coefficients as functions of r are calculated from the decay rates
of the hydrodynamic modes. The theoretical results for thermodynamic and transport properties show

good agreement with extensive computer simulations.

PACS number(s): 05.20.Dd, 47.20.Hw, 64.60.Ht, 51.10.+y

I. INTRODUCTION

The lattice-gas automata (LGA’s) most frequently con-
sidered deal only with point particles [1]. By adding a
long-range attraction to the triangular lattice gas, several
authors [2—-4] have constructed ‘“liquid-gas” models that
can undergo phase separation, when the range r of the at-
tractive force is sufficiently large. The force is impulsive,
and only different from zero when the distance equals the
range r. Both properties are characteristic for particles
interacting with a square-well attraction or square-barrier
repulsion. All interactions conserve number and momen-
tum, and observe the Fermi exclusion rule.

In trying to understand and calculate the equilibrium
and transport properties of LGA’s several fundamental
problems are encountered, such as the validity of the laws
of thermodynamics, and the existence of the Gibbs state.
The first one concerns the derivation and interpretation
of the first and second laws of thermodynamics [5—7] and
the meaning of temperature and pressure. In the present
paper we further restrict ourselves to systems with van-
ishing total momentum (systems macroscopically at rest).
Furthermore, problems related to the non-Galilean factor
g (p) are not addressed here, because they are related to
nonlinear terms in the equations of fluid dynamics [1].
The analysis in this paper is based on hydrodynamic
modes, which only involve the linearized Navier-Stokes
equations. In LGA’s the kinetic pressure or momentum
flux density p, which is the pressure based on the virial
theorem, does not coincide with the “thermodynamic
pressure,” which is obtained as the derivative of the loga-
rithm of the partition function with respect to the
volume. This difference occurs also in the standard
LGA'’s with purely local collision rules, as already noted
in Ref. [5]. For instance, in the Frisch, Hasslacher, and
Pomeau (FHP) [1] models the kinetic pressure is p =3f,
and the “thermodynamic pressure,” is p,, = —3In(1— f),
where f=1p is the reduced density. Very recently Cer-
cignani has been able to derive the laws of thermodynam-
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ics from a discrete velocity Boltzmann equation with con-
tinuous space and time variables [7]. His Boltzmann
equation supports the conservation laws of number,
momentum, and energy, and no Fermi exclusion is im-
posed. His derivation supports the temperature
definition for LGA’s used in Refs. [6,8]. It shows that the
kinetic pressure differs from pkyT, even if the particles
obey Boltzmann statistics. He also clarifies the thermo-
dynamic meaning of p,, —it is not a pressure—and he
shows that the difference between p and py, is related to
the lack of Galilean invariance, or equivalently to the
limited number of velocity states. It is to be expected
that his arguments can be extended to the statistical
mechanics of lattice-gas cellular automata, but this has
still to be done.

The second fundamental problem concerns the ex-
istence or nonexistence of a Gibbs state and the validity
of statistical mechanics for LGA’s. There are detailed
and nondetailed balance models. The first class obeys the
detailed balance conditions, or the weaker Stueckelberg
[9] or semidetailed balance conditions [1,10]. For these
models the Gibbs state is the equilibrium state. The par-
tition function and thermodynamic potential can be cal-
culated. For models that violate the above conditions the
equilibrium state is not the Gibbs state. It is unknown
[11-13], and the partition function cannot be calculated.
The nonlocal interactions of the present model violate the
conditions of detailed or semidetailed balance. All ana-
lytic results for such nondetailed balance models are
based on mean-field theory or the Boltzmann equation, in
which all existing correlations [11,13,14] are neglected by
making a molecular chaos assumption. The same as-
sumptions will be made here when calculating the equa-
tion of state and transport properties of our LGA with
finite-range attraction or repulsion.

Our main goal here is to develop quantitative theoreti-
cal predictions for the thermodynamic and transport
properties of such models, and to test the theories against
results from computer simulations. In Sec. II the dynam-
ics of the attractive model is defined. The microscopic
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and macroscopic properties of the model with attraction
are related to those with repulsion through a duality
transformation. In Sec. III the nonlinear Boltzmann
equation is constructed, which involves three steps: (i)
finite-range collisions, (ii) local collisions, and (iii) propa-
gation, and the equation of state is derived. It has a van
der Waals type loop for long-range attractive forces,
which indicates that the system can undergo a phase sep-
aration [2]. In Sec. IV we calculate the eigenvalues corre-
sponding to the slow hydrodynamic modes of the linear-
ized Boltzmann equation, and extract from them in Sec.
V the transport coefficients as a function of the interac-
tion range. In Sec. VI we will show that the pressure in
the metastable fluid phase, as well as in the region of
coexisting phases, obtained from the Maxwell construc-
tion, is in good agreement with the simulation results
[2,11], and the same holds for the speed of sound. The
analytical calculations and computer simulations of the
transport coefficients are compared in Sec. VII, and we
conclude with a discussion in Sec. VIII. After com-
pletion of this paper a theoretical computation of trans-
port coefficients for a similar model has also been given
by Appert, Zaleski, and d’Humieres [15].

II. FINITE-RANGE INTERACTIONS

A. Microdynamic equation

The model is based on the triangular lattice gas, re-
ferred to as the FHP III model [16] with a maximum of
six moving and one resting particle per node. The model
describes a gas of point particles, obeying the Fermi ex-
clusion rule, and evolving in time under strictly local col-
lision rules. The particles are described in terms of occu-
pation numbers n,(x,t), where the two-dimensional vec-
tor x denotes a node of the triangular lattice, and where i
(i=1,2,...,6) labels an allowed velocity or nearest-
neighbor (NN) lattice vector c;. The label i =0 refers to
the rest particle with c,=0. (Regarding notation: when-
ever x, c;, k with magnitude |x|, |¢;|, |k| appear as argu-
ments of a function, they are simply written as x, ¢;, k.)

The nonlocal attraction is modeled as an impulsive
force of range r, comparable with a square-well potential.
It acts only along any of the six NN lattice vectors c;,
and only when two particles, separated by r lattice units,
are in an interacting configuration. All interacting
configurations of the present model are shown in Fig. 1.
The solid arrow denotes a particle, described by n;(x,t),
and the open arrow a hole, described by
n;(x,t)=1—n;(x,t). The interactions occur irrespective
of the occupation of links, not labeled with arrows. All
interactions conserve total momentum. In the collisions
(@), (b), and (c) an amount of momentum cj,c;, and 2c;,
respectively, is instantaneously exchanged over a dlstance
r, in the direction —c;, between particles of the interact-
ing pair. In repulsive interactions the instantaneous
transfer of momentum is in the opposite direction. The
mechanism of instantaneous transfer of momentum from
one particle to another one at a different position, is
called collisional transfer [17]. It is the dominant trans-
port mechanics in dense liquids.

(a) \/ .......... \/ =

(b) —— =

(c) A/\ .

x x+re; x x + 7¢;
FIG. 1. Nonlocal collision rules for attractive interactions in
direction c¢;. Solid (open) arrows represent particles (holes).

Next we formalize the description. The dynamics of
the present LGA consists of the three steps: (i) a finite-
range attraction step; its action on the occupation num-
ber is denoted by

ni(x,t)=L;(n(t)) ; (2.1)
(ii) a local collision step, denoted by
n/'(x,t)=J,(n'(¢))
=n/(x,t)+1;(n'(t)), (2.2)

where I;(n) in the present paper is the standard nonlinear

collision term of the FHP III model [16], (iii) a propaga-
tion step, denoted by "

ni(x t+c,t+1)=n/"(x,1) . (2.3)

Combination of the three steps yields the microdynamic
equation, formally written as

n;(x +c;,t+1)=J,(L(n(1))) . (2.4)

Steps (ii) and (iii) are standard [1], with the following ad-
ditional specification. In the cases of binary and quadru-
pole collisions with two possible outcomes (rotations of
the ingoing configuration over +27/3 or —27w/3) we
choose at every collision step either the (+)- or the (—)-
rotation for all nodes in the lattice simultaneously, with a
probability of 1. A cyclic permutation of the three steps
generates the same dynamics. Permutation of steps (i)
and (ii) defines a somewhat different dynamics. The
chosen order defines the model. In the next section we
concentrate on the attractive interaction.

B. Attraction

The three possible attractive interactions in Fig. 1 are
independent of each other and may occur simultaneously.
Furthermore there are three possible directions along
which this force is acting. At a given time step ¢ one
direction is chosen at random and applies to all attractive
interactions on the entire lattice.

To make the formal description more explicit we con-
sider an attractive interaction, parallel to c; > with a col-
lision term, denoted by L/(n) with j =i, i+1,i—1. It
modifies the occupation number »;(x,¢) of velocity chan-
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nel c; as

n!/(x,t)=n;(x,t)+Li(n(t)) . (2.5)

The complete collision operator is then given by
aL!*'+BL/+yL/™', where a, B, and y are Boolean
variables, satisfying a+[B+y =1 with expectation values
(a)=(B)=(y)=1. The average { ) is taken over the
ensemble of realizations of the Boolean variables a,f,7,
which are drawn at every time step. Combining the
different j directions and taking the average { ) yields
then

(n))=A(n;)+1[{(Lin))+{(L/ T (n))+{(L{"(n))]
=L,(n) . (2.6)

The collision terms L] consist of a gain term and a loss
term, which can be constructed from Fig. 1 with the re-
sult

Lin)=[A;n; 43 ](x)[n;7; 1 31(x +rc;) 27
—[nn; 3] An; 1 53)(x —re;) .

LI m)=[An; 510075, )(x +re;yy)
—[nm ) An; £ )(x —reiiy)

where we have introduced the shorthand notation,
(7n J(y)=n;(y)n;(y).

C. Repulsion: Dual model

To model repulsive interactions in LGA’s the square
well of the previous section can be replaced by a barrier
of width r. The interacting configurations with corre-
sponding transitions are also defined through Fig. 1 if
open arrows represent particles and solid ones empty
states or holes. Again, the occupation of the remaining
links is irrelevant for the occurrence of the transitions.
The repulsive interaction also conserves total momentum.
The collisions (a), (b), and (c) of Fig. 1 transfer the same
amount of momentum as in the attractive case, but now
in the opposite direction. Consequently, by interchang-
ing particles and holes, i.e., by interchanging »n; and 7; in
(2.6) and (2.7), the attractive interactions become repul-
sive and vice versa. Because the local collision rules of
the FHP III model are self-dual, the LGA with repulsive
interaction is the dual model of the one with attractive
interactions.

If we denote the properties of the repulsive and attrac-
tive model, respectively, with and without an overline,
the duality transformation, f<>1— f, gives the following
relations:

p(p)=3—p(T—p), T(p)=c,(T—p), 2.9
Vip)=wT—p), 7(p)=y(1—p). '

Here p(p) is the pressure, c,(p) the speed of sound, v(p)
the kinematic viscosity, and y(p) the sound damping con-
stant in a system that is macroscopically at rest. As an il-
lustration of this duality relation we show in Fig. 2 the
pressure as a function of density for the attractive model
[Fig. 2(a)] and for its dual, the repulsive model [Fig. 2(b)].

ATTRACTIVE INTERACTION (r=12)

(a)

pressure p(p)

pressure p(p)

REPULSIVE INTERACTION (r=12)

0 1 I 1
0 2 4 6

density p

FIG. 2. Equation of state p(p) with Maxwell construction.
Interaction range » =12 (a) with attractive interactions and (b)
[dual model of (a)] with repulsive interactions. In stable and
metastable regions the simulations agree with the van der Waals
equation; in the unstable region simulations yield the coex-
istence pressure po==0.068.

III. MEAN-FIELD THEORY

A. Nonlinear Boltzmann equation

As a first attempt to describe the thermodynamic and
transport properties of this model, we construct a mean-
field theory by neglecting at every time step the correla-
tions between occupation numbers in different velocity
directions and on different nodes. The distribution func-
tion f;(x,t)={(n;(c,t)),. is the average occupation num-
ber, averaged over some nonequilibrium initial ensemble.
It also includes the average defined below (2.5). The
mean-field approximation is implemented by averaging
the microdynamic equation (2.4) over this nonequilibrium
state and by subsequently making the molecular chaos as-
sumption. The result is the nonlinear Boltzmann equa-
tion for the present model.

f,'(x +ci’t+1):<‘7i(i(n(t)))>ne
=T,(LEn(6)) N=T(Lf(D)),

where the local collision operator J(f) is given by (2.2)

(3.1)
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and the nonlocal one .L(f) by (2.6) and (2.7).

If the total moment of the system is vanishing, the
Boltzmann equation admits the uniform distribution
filx,00)=f with i =0,1,2,...,6, as a stationary distri-
bution. This can be verified from (2.2) and (2.4)-(2.7)
The uniform equilibrium state is, however, not necessari-
ly stable. As we shall see in the next section, the system
undergoes a phase separation into a light and a heavy
phase, if the range of the attractive interaction is
sufficiently large.

B. Equation of state

The local and nonlocal interactions conserve momen-
tum. Consider the local momentum density

glx,t)=p(x,thu(x,t)=3 c,;fi(x,t), (3.2)

where p(x,¢) and u(x,t) are the local density and local
flow velocity. For large spatial and temporal scales, the
local conservation law can be written as 3,pu=—V-P,
where P is the local pressure tensor. As we are only in-
terested in obtaining the local equilibrium pressure, it
suffices for our purpose to derive the linearized Euler
equation, where quadratic and higher-order deviations
from equilibrium and higher-order gradients have been
neglected.

In deriving the explicit form of P(x,t) we first observe
that the FHP III collision rules in (2.2) satisfy
3..c.I;(f)=0. Multiplication of (2.4) with c; and summa-
tion over i yields, with the help of (2.1)-(2.7),

Sc.filx e, t +1)=3 ¢, fi( x,t)-Zc,L (f(1))

i

=3 c.fi(x,0)+1 3 c,Li(f(2),
i i

(3.3)

where n =i,it1. Inspection of (2.7) shows that the non-
local collision term L' can be approximated, in a long-
wavelength limit, by

LM f)=(T,—1)ENf)=V-rc,6}(f), (3.4

where T,g(x)=g(x +rc,). Taylor expansion of the left-
hand side of (3.3) and use of (3.4) yields the pressure ten-
sor correct to O (V) excluded, i.e.,

zccf (x,t)—4r 3 c,c;67(f), (3.5)

’ll

where n =i,i+1 and

6‘:(f):[fifi+3](x)[fifi+3](x

o (3.6)
G =1 ifim )OS if 511 (x —

rcix1) »

with f;=1—f,;. The first term in (3.5) represents the ki-
netic transport, the second the collisional transfer. In
global equilibrium, where f;(x,)=f=p/7, the pres-
sure tensor, P,g(x, ©)=p8,s, is diagonal and the pres-

sure follows from (3.5) and (3.6),
p=3f—2rfX(1~f7
=cllp—Zrp(1—p/7)*] . (3.7

Here c¢,=V'3/7 is the speed of sound in the FHP III
model. The speed of sound ¢, in the present model with
long-range attraction is

2 dp _

c; dp

=c2(1—4rf(1—f)1—2f))=c

1_—rK3)
(3.8

provided dp /dp is positive. This is not the case in the
spinodal region, where dp /dp <0. Pressure and speed of
sound for the repulsive LGA follow from the duality
transformation f<»>1—f, which implies in (3.7) and (3.8)
the replacement » — —r.

A similar expression for the pressure has been derived
in Refs. [2,4] for models with long-range attraction. For
r#0 the pressure p(p) has two inflection points, at
p=p_~1.48 and at p=p ~5.52, independent of r. If
the range r is sufficiently large, the pressure curve has a
loop if (dp /dp)p_=3—4rx3(p_)50. This is the case
for r>8. At the second inflection point p, the slope
(dp/dp), is positive.

The equation of state for » > 8 has metastable and un-
stable branches. We have indeed observed that the sys-
tem undergoes a phase separation into a light gas phase
and a heavy fluid phase of reduced densities p, and p,, re-
spectively, as is known in the literature [2—4]. In the re-
gion of coexisting phases, p, <p<p;, the pressure
remains equal to a constant p, and the values of p,, p,,
and p, are obtained from the Maxwell construction, as
shown in Fig. 2(a) for »r =12. Here one finds for the pres-
sure in the coexisting phase p,=0.068, for the gas densi-
ty p, =0.20, and for the liquid density p; =3.65.

IV. LINEARIZED BOLTZMANN EQUATION

A. Eigenvalue equation

In this section deviations, 8f;(x,t)=f;(x,t)—f, from
the uniform equilibrium state will be analyzed in terms of
eigenmodes, i.e., we look for solutions of the Boltzmann
equation (3.1) of the form

5f,~(x,t)=1/1#(k,ci Jexplik -x +z#(k)t] R 4.1)

where z,(k) represents the eigenvalue of the mode ,.
Here we are only interested in the hydrodynamic or slow
modes, which correspond to the conservation laws, and
satisfy z#(k)—>0 as k—0. If Imzu(k)=cs(k)lk| is non-
vanishing, we are dealing with a sound mode with a prop-
agation speed ¢,(k). The real part Rez,(k) <O represents
the damping.

The two-dimensional system under consideration con-
serves total particle number and momentum. There exist
three corresponding hydrodynamic modes: one shear
mode or transverse velocity mode, ¥,(k,c), and two
sound modes ¢ (k,c) (o0 ==). In the long-wavelength
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limit the eigenvalues have the following form:
z,(k)=—wv|k|*,
z (k)=—iocg|k|—ylk|*,

(4.2)

where v is the kinematic viscosity and ¥ the sound damp-
ing constant. This method provides an alternative to the
Chapman-Enskog method for determining the linear
transport coefficients v and y [18]. The method has been
extended recently to LGA’s [8].

The composite collision operator J(.L(f(¢))) involves
two nonlinear operators J and L. Linearization of the
local collision operator J in (2.2) gives the Boltzmann
collision operator of the standard FHP III model [19],

8f i (x,)=8f/(x,t) +L,(f+8f'(t))

=(1+Q),;8f(x,1) , (4.3)
where I;(f)=0 for the uniform distribution. Terms
quadratic in 8f; have been neglected, (1, with

(i,j=0,1,2,...,6)is a 7X7 matrix. Einstein convention
has been used for repeated indices.

The nonlocal attractive interaction term (2.6) and (2.7)
gives after linearization for plane-wave excitations (4.1),

8fi(x,)=8fi(x,)+1 T LMf+8f(1)

n=iitl

=(1+A(k));8f;(x,1) , (4.4)

where L"(f)=0 for the uniform distribution. Note that
A(k) depends on the wave number k because the attrac-
tion operator is nonlocal. Combination of the linearized
collision operators (2.1) [step (i)] and (2.2) [step (ii)] with
the propagation step (iii) in (2.3) yields the linearized ver-
sion of (2.4) or (3.1), i.e.,

[SUO(1+ Q)1+ AN ke )=e* "y (k,c,) ,
(4.5)

-

where §;(k)=e k'c"S,-j is the (diagonal) propagation
matrix. This linear set of equations for the eigenmodes
Yu(k,c;) (j=0,1,2,...,6) and eigenvalues z,(k) with
z,(k)—0 for kK —0, will be solved in Sec. V for the hy-
drodynamic modes by perturbation theory.

B. Finite-range collision operator

In this section the explicit form of the nonlocal interac-
tion operator A;(k) is constructed, and some useful
properties are derived. Starting from (2.6) and (2.7) we
obtain

=Llucy{(a; +a; 3)sinrk -c; +(a; +a; _)sinrk-c; 1+ (a; +a; )sinrk-c; _}

—3#o{(a;—a; . 3)(1—cosrk-¢;)+(a;—a; _)(1—cosrk -¢; 1)+ (a;—a; ;| (1 —cosrk-c; )} ,

(4.6)

where =V —1. For the determination of the transport coefficients v and ¥ in (4.2) only the long-wavelength behavior
of A(k) is required. We therefore expand (4.6) in powers of k. Collecting results to O (k?) yields

Aj(k)a;=(Alk)a));

- (1) 24(2) .
=(k)Ajj'a; + (k) Aja; + .

The matrices A" and A'® are defined as

(A"]a ))i=4rKs{c(a; tai ) te e ta, ) te,; g ta )}

2 —
(A )|a))i—%rzKZ{cl%(ai—ai+3)+cl?i+1(ai—ai71)+C1?i—l(a[_ai+1)} )

A
where ¢; =k-c; and a;=al(c;) are the components of a
seven-vector (i =0,1,2,...,6) and k a unit vector. We
further introduced

K2=f(1—f) ’
K =f(1—f)(1—2f) .

In the evaluation of the formulas, to be obtained in the
next section, one needs Ala) for a={1,¢;,c,} where
¢, =k, c is the transverse component of c. It requires
straightforward but lengthy algebra. The result is

4.7)
(4.8)
—
A(1)|1)=—“3-rx3|c,>, (1]AM =0,
A(”Ic, =7rK3lc,2—cf) ,
(4.10)
(e AV =2rk{(c?[+Lriy{ct—c}l,

AV e y=rslcie, ), (e AV ="1Lris(cic,] .

Here we introduced the symbol ({a|A);=a;A ;. The two
nonvanishing matrix elements of A'? in the subspace,
spanned by |1),]c; ), and |c, ), are

(c/|AP)e,y=2r%, ,

(4.11)
<cl|A(2)lcl =%r2K2 )
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where also the scalar product (a|b)=3a;b; has been
introduced.

V. PROPAGATION AND DAMPING CONSTANTS

A. Perturbation theory

To solve the eigenvalue problem (4.5) for the hydro-
dynamic modes it is convenient to write (5.1) in the form

{e

and expand the different terms in powers of the wave
number,

z, (k)=(k)z$ + (k)2 + - -+,
U () =90+ (k)i + (k)PP + - - -
AR)=k)AV+(k)2AP+ - - -

Z#(k)'FLk‘C

—(1+ Q[ 1+ A} ¥,k ¢;)=0 (5.1)

(5.2)

and inserting the expansions into the eigenvalue equation
(5.1), to yield

Qly)) =0,

QY y=[c;+z —(1+Q)AV][yD) ,

QY2 =[He;+zP P +z2 —(1+Q)AP] ")
+[01+le)—(1+Q)A(1)]|¢Ll)> .

(5.3)

To obtain the transport coefficients in (4.2) one needs zf),

which can be obtained from the second-order equation in
(5.3). Consider first the solution of the zeroth-order equa-
tion, which is an arbitrary linear combination of col-
lisional invariants a,,, i.e.,

W) =4,11)+ 4,lc;)+ 4 e,

=3 4,la,) . (5.4)

The eigenvalue problem to zeroth order is threefold de-
generate. The collisional invariants a,={1,¢;,c,} are
right and left zero eigenvectors of the symmetric matrix
Q.

The higher-order inhomogeneous equations in (5.3) are
only soluble if the inhomogeneous term, say, R is orthog-
onal to the zero subspace, i.e., {a,|R)=0. This yields
the first-order eigenvalue problem:

S (a,lz}) +¢;—AVla,, ) 4, =0, (5.5)
m

where a, with (n =p,l,1) are the collisional invariants.
The matrix A'"), defined in (4.8), not symmetric. Conse-
quently, its right eigenvectors [¢\)’) are not orthogonal,
but form a biorthogonal set together with the left eigen-

vectors (JLO)I, ie.,

(TP =N,5

1 puup’ o (56)

where W, is a normalization constant. The matrix ele-
ments in (5.5) can be calculated with the help of the prop-
erties (4.10). The only nonvanishing matrix elements of
M =c;— A" in the zero subspace a, are

M, ={c/le;)=Tc§=3,

, (5.7)
M, ={c;le,;— A1)

=7cd(1—4ri;)=7c2 .

In the region where ¢2=dp /dp is positive, c; is the speed
of sound in the nonlocal attractive LGA [see (3.8) and
(4.9)], and ¢, the speed of sound of the standard FHP III
model. In the spinodal region ¢?=dp /dp <0. This im-
plies that c¢,=xwa is pure imaginary. The long-
wavelength “sound” excitations in (4.1) are no longer
propagating. They combine into one unstable mode and
one strongly damped mode with amplitudes behaving like
exp[akt] and exp[ —akt], respectively. This is the typical
eigenvalue spectrum of the unstable modes in the Cahn-
Hilliard theory [20] of spinodal decomposition. In Ref.
[21] the eigenvalue spectrum of (5.1) has been solved nu-
merically for all k values in the first Brillouin zone.

Outside the spinodal region the solution of the first-
order eigenvalue problem gives for sound (u=0==) and
shear modes (u=v)

z2V=—gc,, z'=0. (5.8)
The corresponding right and left eigenvectors are
[ =le§+ocse), 19 =lc,),
(5.9)

@PN=(e; +ocl, (PP1=(e,l,

where ¢; and ¢, are seven-vectors with components cj;
and c¢,; (i=0,1,2,...,6) and ¢, and ¢, are constants,
defined in (3.8). The nontrivial biorthogonality relations
are

<J(00)I¢£70')> :6cs800’ s

(GO =3 (5.10

If the eigenvalue z|" in (5.8) is inserted in (5.3), the equa-
tion is soluble and has the formal solution
l¢ )=~ K'"), where |[K'") is the inhomogeneous
term in the first-order equation of (5.3), and Q7! the in-
verse of the collision operator in the orthogonal comple-
ment of the null space.

In absence of attractive interactions, obtained by set-
ting r=0 in (5.7), one finds ¢, =c,. The right and left
sound mode in (5.9) are the same apart from an overall
normalization constant, and the eigenvectors Iz,bLO)) form
an orthogonal set.

The scheme for solving the second-order equation (5.3)
is the same as for the first order. The eigenvalue ZLZ) can
be determined from the solubility condition
(a,|K®)=0, where |K®) is the inhomogeneous term
in the second-order equation. In fact, by using
(J;LO)|K(2))=O, one obtains a single equation for the
damping coefficient,



994 M. GERITS, M. H. ERNST, AND D. FRENKEL 48

-~ - —~ 1
ZLZ)(tpLO)hb(nO))=_<¢LO)'_;_(CI+ZLI))Z_A(2)|¢L0))_(¢L0)|[CI+Z;L1)_A(l)]_ﬁ[cl+le)_(1+Q)A(1)]|¢LO)> . (5.11)

In deriving this result from (5.3) we have replaced |1/;L”>
by the formal solution Q™ '[4}”’) of the first-order equa-
tion in (5.3). We note in passing that 1/€ is the inverse
of the Q matrix in the orthogonal complement of its ker-

nel.

B. Transport coefficients

Without the nonlocal attraction terms (A‘=A?=0)
Eq. (5.11) gives the standard expressions [16] for the kine-
matic viscosity, z{?’ =v,, and the sound damping con-
stant zﬁf)zyo of the FHP III model, as will be shown
first. In fact we find from (5.8) and (5.11) the damping

coeflicient of the shear mode,

1 1
Z(LZ):V():_<CICJ. E+5 c,cl>/(cl|cl>
1 1 1
=2 | 2 12
o2 (5.12)

In this and subsequent equations we use eigenvectors and
eigenvalues of the FHP III collision operator [19]

Qleie, Y =—w,lcic,) ,
Qle;—cl)=—a,lef—ci), (5.13)
Qlic?—cf)=—w tc?—c§) ,
where the eigenvalues w,, are positive and
@, =K,(7T—8k,) ,
(5.14)

@e=Try(1—2k,) ,

with «,= f(1—f). In a similar manner the sound damp-
ing constant can be calculated from (5.11), (5.9), and (5.8)
with the result

1 1 1
ZETZ)=7/O=—E<C12_C(2) 6‘*‘5 012_0(2)>/<C1|Cl> ,
(5.15)
where also the relations ¢, =cg and

(c;+2z )P =0(c?—c3) have been used. The vector
c}—c3 can be decomposed into the second and third
eigenvectors in (5.13). The sound damping becomes then

Yo=3(vy+&y), where the bulk viscosity £ is

1 1 111
§o=—<302—65 a7 302—03>/<01101>
4 o 2 (5.16)

To calculate the transport coefficients for the attractive
LGA, the matrices A'") and A® have to be taken into ac-
count in (5.11). This can be done using the properties

(4.10) and (4.11) of Sec. IVB. The algebra is again
lengthy, but straightforward, and we obtain for the kine-
matic viscosity

y=

1, (1)l —rey(1=0,)] = 3(1=r;,)

v

=V0(1—%rK3)(1—rK3)+ 11—er3(1—%,-,(3)_+_%’.2“.2 .

(5.17)

For the sound damping constant we find y=1(v+{)
with a bulk viscosity of

E=Co(1—4rky)— Lris+iri, . (5.18)
These results apply to the attractive LGA. For the repul-
sive model we use the duality transformation f<>1— f of
Sec. II C, which implies in (5.17) and (5.18) that «,—k,
and k;— —k;. The transport coefficients are positive for
all values of the density and the interaction range, and
larger than the corresponding values at »r =0. This can
be seen by comparing Figs. 5 and 9 with Figs. 6 and 10,
respectively.

Some remarks about the validity of the k expansion
(5.2) are in order here. In the absence of long-range
forces the k expansion of the kinetic equation is only
meaningful when the streaming term is small compared
to the collision term, i.e., ||ik-c|| <<||Q||. For small den-
sities, f =p /7, the matrix elements of € are proportional
to f, which imposes the constraint k <<f or kl;<<1
where I, ~1/f is the mean free path.

The Taylor expansion (5.2) or (4.7) of the nonlocal in-
teraction operator A(k) imposes the second condition
kr << 1. Hence the propagation speed and damping con-
stants derived here only apply to long-wavelength distur-
bances with a wavelength large compared to mean free
path /; and the force range r. The exact spectrum of (5.1)
for arbitrary wave number k inside the first Brillouin
zone and for arbitrary force range » will be discussed else-
where [21].

VI. PRESSURE SIMULATIONS

A. Measurements

The equilibrium pressure can be measured by deter-
mining the trace of the microscopic momentum flux or
stress tensor, 7,g(x ), and averaging it over the equilibri-
um state, i.e.,

=1
p—2V§,(Taa(x)) , (6.1)

where x runs over the whole lattice and ¥V is the number
of lattice sites. Additional space averaging, and eventual-
ly also time averaging, will further reduce the statistical
noise. In our model c; momentum is only transported in
a direction parallel to c;. Let the microscopic momen-
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tum flux be

> Taplx (6.2)

6
)= cicipn;+1;) .
i=1
The first term, involving n;, is the total momentum flux
due to streaming; the second one, involving /;, is the total
flux due to the long-range interaction. The pressure is
then
1 6

p=5y 2 Anth) (6.3)
because c2=1. We determine the quantities n; and [; by
counting the momentum flux at each time step. The
quantity 3%_,n; is the number of particles having a
nonzero velocity. This term enters because in one time
step each one of these particles propagates over one lat-
tice distance, transporting one unit of momentum.

The interactions (a) and (b) in Fig. 1 transfer one unit
of ¢; momentum over a distance 7 in the direction —c s
and the interaction (c) of Fig. 1 transfers two units. We
determined 3¢_,/; by counting the number of interac-
tions of types (a) and (b) and multiplying the result with
—r and those of type (c) by —2r. For repulsive interac-
tions the transport due to collisional transfer is in the op-
posite direction, and —r should be replaced by +r.

To prepare the initial state we fill all velocity channels
at random with a certain density and let the LGA fluid
relax to equilibrium for a certain number of time steps.
Then the pressure is measured over a period of 250 time
steps, using the method described above. The results are
averaged over 5 runs, and the error is estimated by the
standard deviation, divided by V5—1.

B. Results

Figure 3 shows the results of our simulation with an at-
tractive interaction having a range of 8 lattice sites,
where r, =7.8 is the critical value of the range r accord-
ing to our mean-field theory, as shown in Sec. III B. For
larger r values the mean-field equation for the pressure
shows a van der Waals loop. Our results are represented

RANGE (r=8)

N
T

pressure p(p)

1 _ L L
0 2 4 6
density p

FIG. 3. Equation of state p(p) at range » =8, just above the
critical range r. ~7.8, compared with computer simulations.

by the triangles; the solid line is the theoretical predic-
tion. Theoretically dp /dp is negative between the densi-
ties p=1.22 and p=1.75, so the fluid has to separate into
two phases. However, the effect is too small to show up
in our measurements at a range of 8 lattice sites.

To get more significant results, which show the effect
of phase separation, we did measurements for a fluid with
an interaction range of 12 lattice sites. The results are
shown in Fig. 2(a). The black triangles are the results of
the simulations in which we started with a randomly
filled lattice and let it relax for 3000 time steps.

The negative pressures at certain densities are a draw-
back of our model, but they are as predicted by the
theory. In the spinodal range where dp /dp <0, the re-
sults seem to lie on the horizontal line predicted by the
Maxwell construction and not on the van der Waals
curve. At these densities phase separation was observed.
We note that for dp /dp positive, the results lie on the
van der Waals type curve instead of on the horizontal
line, as one would expect from the Maxwell construction.
At these densities the system seems to be in a metastable
state. We also observe that the gas in the metastable re-
gion can be forced to phase separate by artificially mak-
ing some local bubbles of the heavy or light phase.

For the densities 1.0 and 2.5 we also measured the
pressure as function of time to see how the system evolves
to equilibrium. In both cases we started with a randomly
filled lattice. The results at p=2.5 are shown in Fig. 4.
For each point we averaged the pressure over 50 time
steps and 5 runs. The horizontal line is the prediction of
the Maxwell construction.

At the low density side, p=1.0, the pressure exhibits
strong fluctuations between 0.085 and p,=0.068, which
is the pressure at coexistence. The large fluctuations are
typical of coexisting phases. Over a time interval of 2000
time steps we did not observe any approach to the pres-
sure py. At density 2.5 about 700 time steps are needed
to reach equilibrium.

We also observed the actual separation of the LGA
fluid into bubbles of light and heavy phase, in agreement
with the earlier observations of [2,3].

pressure p(t)
o e

1
°
T
——
1

} RANGE (r=8)
{ DENSITY (p=2.5)
02 lpaeasnd i
1 1 1
0 500 1000 1500 2000
time t

FIG. 4. Approach of simulated pressure to its value
Po=0.068 at coexistence after initial preparation at uniform
density p=2.5.
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VII. SIMULATIONS OF TRANSPORT COEFFICIENTS

A. Kinematic viscosity

To linear level the transverse velocity field relaxes as
g.(k,t)=g, (k,0)exp[ —vk?t], where g, (k,t)=k -g(k,t),
is the transverse component of the momentum density,
defined in (3.2). We use this relation to determine the
shear viscosity, following the method used in [14].

At the initial time we set up a shear wave with a fixed
wave vector k. We then let the system relax by applying
the dynamics. At regular time intervals we perform a
Fourier transformation on the transverse velocity field.
From the Fourier coefficients we determine the kinematic
viscosity.

We shall now discuss this method in more detail. The
macroscopic cell of our lattice gas is diamond shaped, L
lattice units wide in the directions c¢; and c,, where
L =256 in our simulations. We apply periodic boundary
conditions. The x axis is parallel to the basis vector ¢, of
the direct lattice; the y axis is parallel to a basis vector of
the reciprocal lattice. We set up a shear wave in the y
direction with wavelength, A=1LV'3. So we have a
wave vector, k=27§ /[ 1V'3X256], where § is a unit vec-
tor in the positive y direction.

Preparation of the initial shear wave was done as fol-
lows: Let the origin of the Cartesian-coordinate system
be in the lower left corner of the diamond, and let f be
the reduced density of the LGA fluid. Then the rest par-
ticle states with c,=0 are being filled with probability f.
The states c;, c,, and c4 are filled with probability
f+asin(2my /A), where y is the y coordinate of the lat-
tice site. The states c;, ¢4, and c; are filled with probabili-
ty f —a sin(2wy /A). The density in the whole lattice is a
constant, p=7f, but we have created a shear wave
g,(k,0)=4a sin(27y /A). We have chosen a sufficiently
small so that no significant nonlinear effects could be ob-
served in the dynamics.

Since we are only interested in waves with the previ-
ously described wave vector k, the Fourier transforma-
tion of the transverse velocity field is performed at regu-
lar time intervals and is given by

6
gl(k,t)=2 e ~w2m/h Z cixnl.(x,y,t) ,
X,y i=0

(7.1)

where A=1V"3X256. We perform a linear regression of
the logarithm of these Fourier components versus the
time. The slope gives us vk?2.

Figure 5 shows the results for the kinematic viscosity
without a long-range interaction. We did five measure-
ments with a length of 4000 time steps and a Fourier
transformation after every 40 time steps to determine the
viscosity at each density shown. The amplitude of the in-
itial wave was 2. The errors lie within the triangles. The
dashed line is the theoretical prediction from the
Boltzmann approximation.

The measured values of the kinematic viscosity (trian-
gles) agree well with the simulation results of Ref. [16],
which were also obtained by setting up a macroscopic ini-
tial shear wave. The FHP III model is self-dual, so that
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FIG. 5. Kinematic viscosity v(p) for the FHP III model
(only local interactions). Theoretical values from Boltzmann
and ring kinetic theory are compared with computer simula-
tions.

the graph is symmetric around p=3.5. The results are
compared with the predictions from the Boltzmann equa-
tion (5.12), shown as dashed lines, and with those from
the ring kinetic theory, evaluated by van Velzen, Brito,
and Ernst [22]. The transport coefficients v and y were
calculated at the same densities where the simulations
have been performed. To guide the eye the points
representing the results from ring kinetic theory are con-
nected by straight line segments. The Boltzmann equa-
tion neglects all correlations between colliding particles,
i.e., the molecular chaos assumption is made at every
time step. The ring equation of Ref. [22] represents the
simplest sequences of correlated collisions. It accounts
for approximately 60% of the observed deviations be-
tween simulations and Boltzmann approximation.

The results of the simulations with long-range interac-
tions are given in Figs. 6 and 7. All errors are within the
symbols. The lines are the predictions of the viscosity in
the Boltzmann approximation, as calculated in Sec. V B.
In Fig. 6 we show the results as a function of the density
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FIG. 6. Kinematic viscosity v(p) in model with nonlocal at-
traction of range r=0, 1, 5. Boltzmann results are compared
with computer simulations.
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FIG. 7. Boltzmann value of kinematic viscosity v(p) as a
function of the range r at density p=3, compared with simula-
tion results.

p for different ranges of the attractive force (r =0,1,5).
The solid line corresponds to range r =0 (the same data
are shown in Fig. 5 as a dashed line together with the
simulations for » =0). Within the present theory we can-
not decide whether the deviations at larger r values (see
Figs. 6 and 7 with r =5) are due to the breakdown of the
assumption, kr <<1, or are a consequence of the mean-
field assumption that neglects the correlations between
colliding particles.

Figure 7 shows the viscosity as a function of the range
r at a fixed density p=3. The agreement between the
simulations and the mean-field theory for the LGA with
attractive interactions is surprisingly good. In fact the
quantitative predictions of the Boltzmann approximation
for transport coefficients in local and nonlocal interaction
models are of equal quality when compared with results
of computer simulations.

B. Propagation and damping of sound

We use a similar method to determine the sound damp-
ing coefficient ¥y =1(v+¢§). Macroscopically the sound
modes are Fourier components of the deviations from
equilibrium in the number density 8p(k,?) and in the lon-
gitudinal momentum density g;(k,?z)=k-g(k,t). They
decay as

e, 8plk,t)+og(k,t)

—(Lacsk+yk2)t

=[c,6p(k,0)+0g;(k,0)]e (7.2)

We start with a longitudinal velocity wave with the same
wave vector as for the shear wave. The density is con-
stant initially, so that 8p(k,0)=0. The relaxation of the
longitudinal velocity field and the density field are de-
scribed by

gl(k’t)zgl(k,o)cos(cskt)e_7”‘2' , .
Sp(k,t)z(L/Cs)gl(k,O)sin(cskt)e“yth ) .

The initial longitudinal wave is prepared in the same
manner as the shear wave. We chose the same wave vec-

tor k. The states ¢, ¢, and c, are filled with probability
f. The probability for the states c, and c; is
f+asin(2ry /L) and for the states cs and c4 is
f—asin(2my /A). The initial density field is constant, so
that we have a longitudinal wave with amplitude
g,(k,0)=2aV 3sin(2my /A).

At each time step we perform a Fourier transformation
of the longitudinal velocity field and density field for the
wave vector k:

6
gk, t1)=3 e " 3 coni(x,p,0) |,
X, i=0
g ) (7.4)
Sp(k,t)=3 |e w¥r/* 3 [n,-(x,y,t)—po]l )
x,y i=0

We deduce the velocity of sound from the time be-
tween the zero crossings of g;(k,t) and 8p(k,t). The ve-
locity of sound is given by ¢, =A /2T, where T is the time
between two successive zeros and A=21V'3X256 is the
wavelength.

At times mT, where T is again the time between two
successive zeros and m an integer, the absolute value of
the longitudinal wave behaves like |g;(k,mT)|
=C,exp[ —yk*mT]. At times 1T+mT the density
wave behaves like |8p(k,LT+mT)|=C,exp[ —vk*(1T
+mT)] with C; and C, constants. So in a similar
manner as in Sec. VII A we can deduce ¥ from the longi-
tudinal velocity wave and the density wave at the
specified times.

We perform a linear regression of the logarithm of the
absolute value of the Fourier components g;(k,t) at times
t =MT, and yk? can be determined from the slope. We
do the same for 8p(k,t) at times t =1T +mT. Our final
result is the mean of these two values for y.

Figure 8 shows the results for the velocity of sound for
different interaction ranges in the attractive model, where
the system does not phase separate. We did five runs
with a length of 3000 time steps to determine each point.
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FIG. 8. Speed of sound ¢,(p) is the attractive model at range
r=0,2,5.
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FIG. 9. Sound damping constant y(p) for the FHP III model
(only local interactions). Theoretical values from Boltzmann
and ring kinetic theory are compared with computer simula-
tions.

The amplitude of the longitudinal velocity wave is
V'3/28. These results are in perfect agreement with the
theoretical predictions of the mean-field theory.

In Fig. 9 we show the simulation results for the sound
damping constant ¥ =1(v+{) in the standard FHP III
model with range r =0. They are in general agreement
with the measurements in Ref. [16]. The data are ex-
tracted from the same data as the speed of sound. The
results are compared with the Boltzmann approximation
(dashed lines) and with the simple ring approximation of
Ref. [22]. The simple ring approximation accounts again
for about 60% of the observed deviations between simu-
lations and Boltzmann approximation.

In Fig. 10 we show the results for the sound damping
coeflicient for the model with finite-range attraction and a
comparison with the predictions from mean-field theory.
Results are shown for a range of 2 and 5 lattice sites. The
statistical errors are bigger for longer ranges. Also the
errors are large in comparison with the results for the
shear viscosity. This is probably due to our method of

range
]

sound damping y(p)

density p

FIG. 10. Sound damping constant y(p) in the model with
nonlocal attraction of range » =0, 1, 5. Boltzmann results are
compared with computer simulations.

extracting the sound damping coefficient from the data.
We used fewer points to determine this coefficient than
we did to determine the kinematic viscosity. For smaller
values for the velocity of sound, we have fewer points to
determine the sound damping coefficient. For short
ranges (see Fig. 10 with r =2) the predictions of the
Boltzmann equation are quite good. For larger ranges
(see Fig. 10 with » =5) the deviations start to grow.

VIII. CONCLUSIONS AND PROBLEMS

In this paper we have modeled finite-range attractive
or repulsive interactions in the context of lattice-gas au-
tomata by modifying the standard triangular FHP III
model and we have studied its equilibrium and transport
properties. The model does not conserve energy. It has
no temperature, and internal or free energy are not ther-
modynamic state functions. The model does not obey the
detailed balance conditions. This can be seen as follows.
Take for instance the (a) collision of Fig. 1. The left
configuration A4 goes with probability 1 into the right
configuration B. The right configuration B on the other
hand goes with probability 1 into itself. The transition
from B to A is impossible. Therefore the total probabili-
ty (summed over all input states) to find configuration 4
as an output state in the long-range interaction step is
smaller than unity. Consequently, the semidetailed bal-
ance condition [1] is also violated.

For this model a theoretical description is given of
transport through collisional transfer in LGA’s, i.e., in-
stantaneous transfer of momentum over the range r of the
interaction. If the range of interaction—it may be at-
tractive or repulsive—is sufficiently large, the equation of
state for the pressure has a loop of the van der Waals
type. There are metastable and unstable branches. We
apply the Maxwell construction to obtain the stable equi-
librium states of coexisting high and low density phases.
The measured values of the pressure are in good agree-
ment with the equation of state for this model, even in
the two-phase region. We also observed the actual phase
separation in bubbles of high and low density.

However, there is a conceptual problem here, because
there is no justification for applying the Maxwell con-
struction to the kinetic pressure. The Maxwell construc-
tion is based on the thermodynamic pressure being a
derivative of some thermodynamic potential (e.g., free en-
ergy) that has an extremum for a stable equilibrium state.
Furthermore the partition function and thermodynamic
potential cannot be calculated, because the equilibrium
state is unknown for models that violate detailed or
semidetailed balance.

The model with nonlocal repulsion is simply the dual
of the one with attraction. Its macroscopic properties are
related by the duality transformation, f=1—f. If the
model with attraction has a phase transition, the one with
repulsion has a phase transition as well. This is illustrat-
ed in Figs. 2(a) and 2(b).

The analysis of the nonequilibrium properties of the
model is based on the nonlinear Boltzmann equation, in
which the molecular chaos assumption is made in the lo-
cal and in the finite-range collision terms. For the first
time analytical results have been obtained for the trans-
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port coefficients in such models. This has been done by
linearizing the Boltzmann equation around the uniform
equilibrium state and determining the eigenmodes. The
eigenvalues for small k yield the speed of sound, sound
damping constant ¥, and kinematic viscosity v. The
transport coefficients contain contributions linear and
quadratic in the range r of the nonlocal interaction opera-
tor A. Very recently similar results have been obtained
by Appert, Zaleski, and d’Humieres [15].

Apart from the equation of state we have also mea-
sured transport coefficients. The viscosity and sound
damping constant were obtained from the damping of a
sinusoidal disturbance in the transverse and in the longi-
tudinal flow field, respectively. In the single-phase region
the measured speed of sound is in excellent agreement
with both the pressure measurements as well as with the
theoretical predictions. Also the measured transport
coefficients agree well with the theoretical predictions for
short ranges of the nonlocal interactions. For longer
ranges there are effects of generalized hydrodynamics
with wave-number-dependent transport coefficients.

The agreement of theory and simulations is remarkable
for the long-range interaction models although they lack
semidetailed balance. In fact microstates are lost in the
nonlocal interaction step. The fundamental question is
now: Do the local collision step and the propagaqtion
step replenish the microstates, lost in the nonlocal in-
teraction step, or is the final equilibrium state living in a
contracted space of much lower dimensionality, as seems
to be the case in the biased LGA of Ref. [23]? The equi-
librium state of such a model is not known. Here we
treated the problem only in mean-field approximation, in
which the correlation between fluctuations is totally
neglected.
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